Building Multiobjective Resilient Networks
نویسندگان
چکیده
The paper deals with the design of resilient networks that are fault tolerant against link failures. Usually, fault tolerance is achieved by providing backup paths, which are used in case of an edge failure on a primary path. We consider this task as a multiobjective optimization problem: to provide resilience in networks while minimizing the cost subject to capacity constraint. We propose a stochastic approach, which can generate multiple Pareto solutions in a single run. The feasibility of the proposed method is illustrated by considering two network design problems.
منابع مشابه
Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملDesigning resilient networks using multicriteria metaheuristics
The paper deals with the design of resilient networks that are fault tolerant against link failures. Usually, fault tolerance is achieved by providing backup paths, which are used in case of an edge failure on a primary path. We consider this task as a multiobjective optimization problem: to provide resilience in networks while minimizing the cost subject to capacity constraint. We propose a st...
متن کاملMultiobjective design of sewer networks
The sewer layout in flat areas significantly influences the construction and operational costs as well as reliability of the network performance. To find an optimum design of sewer networks for flat areas, this study presents a multi-objective optimization problem with the objective functions of 1- the cost and 2- the reliability. The reliability criterion is defined as the effect of a clogging...
متن کاملMemetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology
The main objective of this research is to automatically design Artificial Neural Network models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: a high classification level in the dataset and high classification levels for each class. The Memetic Pareto Differential Evolution Neural Network chosen to learn th...
متن کاملDifficulties and Opportunities in Building Resilient Clinical Monitoring Systems with Wireless Sensor Networks
............................................................................................................................................................. ix
متن کامل